

Deep Learning for Computer Vision

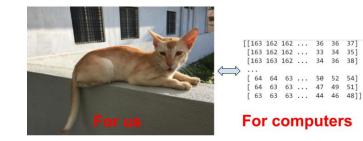
Dr. Konda Reddy Mopuri Mehta Family School of Data Science and Artificial Intelligence IIT Guwahati Aug-Dec 2022

Image Classification

 $\bullet\,$ Familiar CV task: i/p is an image and o/p is a category label

Challenge: Semantic gap

52 54]



Challenge: View point variation

							1			5 2
	Ţ						~			
[[161 160	160	46	46	47]	[[160	159	159	 40	40	41]
[161 160	160	43	44	45]	[160	159	159	 37	38	39]
[161 161	160	42	44	46]	[160	160	159	 35	37	39]
				-						
[69 69			64	66]	[68	68	67	 66	68	70]
[69 68			61	63]	[68	67	67	 63	65	67]
[68 68	68	56	58	60]]	[67	67	67	 60	62	64]]

Challenge: intra-class-variation

Challenge: lighting-variation

Other Challenges

- Occlusion
- Deformation
- Clutter
- . . .

Image classification: elementary task for other CV tasks

Object detection

Image classification: elementary task for ot CV tasks

- Object detection
- Caption Generation

Image classification: elementary task for other CV tasks

- Object detection
- Caption Generation
- Playing Chess/Go
- . . .

अयोगिकी संस्कृ

Object Detection

Dog Paper Cat Table Screwdriver Truck Pen Sleeping <EoS>

Dog Paper Cat Table Screwdriver Truck Pen Sleeping <EoS>

Predict the next word

Cat

Dog Paper Cat Table Screwdriver Truck Pen Sleeping <EoS>

Predict the next word

Cat Sleeping

Dog Paper Cat Screwdriver Truck Pen Sleeping <EoS>

Predict the next word

Cat Sleeping on

Dog Paper Cat Table Screwdriver Truck Pen Sleeping <EoS>

Predict the next word

Cat Sleeping on the

Dog Paper Cat Table Screwdriver Truck Pen Sleeping <EoS>

Predict the next word

Cat Sleeping on the table

How to build an image classifier?

def my_image_classifier(): # some craftsmanship goes here return predicted_class_label

How to build an image classifier?

def my_image_classifier():
some craftsmanship goes here
return predicted_class_label

• Are there any rules that can we can hard-code? (like writing a program for addition of two numbers)

How to build an image classifier?

def my_image_classifier():
some craftsmanship goes here
return predicted_class_label

- Are there any rules that can we can hard-code? (like writing a program for addition of two numbers)
- One can see that such an algorithm is not (i) gonna be robust, and (ii) transferable across categories

Here comes Machine Learning!

 Instead of trying to encode our knowledge of the objects, we take a data-driven approach

Here comes Machine Learning!

- Instead of trying to encode our knowledge of the objects, we take a data-driven approach
- Build algorithms that can learn from the data

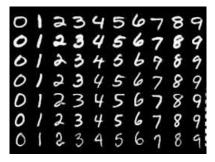
Here comes Machine Learning!

def train(data): # data: (images, labels)
Some machine learning!
return trained_model

def test(trained_model, test_images):
trained_model performs the inference
on the input test images
return predicted_labels

Common datasets for image classification: MNIST

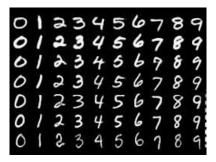
• 10-class problem: $\{0, 1, 2, \dots, 9\}$



Common datasets for image classification: MNIST

• 10-class problem: $\{0, 1, 2, \dots, 9\}$

• 28×28 gray-scale images



Common datasets for image classification: MNIST

- 10-class problem: $\{0, 1, 2, \dots, 9\}$
- 28×28 gray-scale images
- 50K for training, and 10K for testing

234567 345 6 5 6 6 6

Common datasets for image classification: CIFAR-10

 10-class problem: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

airplane	🛁 📉 📈 🖌 🖿 🗾 🎆 🔤 🛀
automobile	🖶 🖏 🥁 🌅 🔤 😻 🚔 🍫
bird	S 🖬 🖉 🕺 🔊 S 🖉 S 🖉
cat	🐮 😻 🐄 🔜 🎇 🗶 🕰 🖉 🤝 📝
deer	🎉 🔛 🏋 🐖 🎇 🌠 🕷 🧱 🥨
dog	🕅 🗶 🦔 🔛 🎘 🎒 🧿 💽 🗥 🌋
frog	
horse	🏜 🐼 🚵 🕅 📷 🖾 🎉 🕷
ship	😤 💆 些 🚢 🚔 💋 🖉 🙇
truck	i 🖓 🐛 🕵 👹 🔤 📷 很 🕋 很

Common datasets for image classification: CIFAR-10

- 10-class problem: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck
- 32×32 RGB images

airplane	🛁 🌇 🜉 📈 🤛 📨 🌉 🎆 🔤 🕰
automobile	🕀 🔛 🥁 🕵 🔙 👑 😂 🖴 🍫
bird	S 🖬 🖉 🕺 🚝 🔨 🦻 🔛 💆
cat	🐮 😻 🖄 🔤 🎇 🜉 🕰 🖉 蒙
deer	M 📰 🏋 🥽 🎆 🎲 🐩 📰 🚟
dog	🛐 🌊 🤜 🎇 🎘 🎒 🖉 🛣
frog	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
horse	🏜 🐼 🚵 🕅 📷 🖾 🎉 🗊
ship	🧮 💆 些 🔤 🚢 🥌 💋 🖉 🙇
truck	

Common datasets for image classification: CIFAR-10

- 10-class problem: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck
- 32×32 RGB images
- 50K for training, and 10K for • testing

airplane	🛁 🐹 📈 🖌 🗉 🗾 👪 🛶 🍇
automobile	n 🔁 🔛 🧱 🕵 🚾 👑 🔤 🚔 🐐
bird	S 🗾 🖉 📢 🔊 🕵 🌾 🚱 😣
cat	N N N N N N N N N N N N N N N N N N N
deer	🎉 🖾 🏹 🗮 🌉 🎆 🎆 🌌
dog	🛐 📶 🛹 🔛 🉈 🏹 🧃 🕄 🕅 🌋
frog	
horse	📲 🐼 🚵 🕅 📷 🕾 🎉 🗊
ship	🗃 😼 些 📥 📥 🥩 🖉 🜌 🜌
truck	i 💜 💒 💒 👹 🔤 📷 👪

Common datasets for image classification: CIFAR-10

- 10-class problem: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck
- $32 \times 32 \times 3$ (RGB) images
- 50K for training, and 10K for testing

airplane	🔤 🐹 🔀 🖌 🖌 🖿 🗾 🗱 🛶 😂
automobile	an a
bird	S. 🖬 🖉 🕺 🚑 🔨 🌮 🔛 📐 🜌
cat	N N N N N N N N N N N N N N N N N N N
deer	M 📰 🏋 🥽 🔛 🖓 🛐 📰 🕰
dog	🛐 🔬 🔫 🔛 🎘 🎒 👩 📢 🏦 🌋
frog	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
horse	🕌 🐭 ጅ 🔛 🕅 📷 🖙 🚟 🎉 🚛
ship	🧮 🛃 🚞 🕍 🗫 💋 🜌 🙋 🙇
truck	A A A A A A A A A A A A A A A A A A A

Source

We work with CIFAR-10

• We use CIFAR-10 for most of our assignments and experiments

CIFAR-100 is a related dataset

Common datasets for image classification:

• 1000 object categories

Common datasets for image classification:

- 1000 object categories
- 1.3M, 50K, 100K training, validation and testing images

Common datasets for image classification: ImageNet

- 1000 object categories
- 1.3M, 50K, 100K training, validation and testing images
- Considered gold standard (as of 2020s)

Common datasets for image classification

MIT places

Common datasets for image classification

- MIT places
- Omniglot

Common datasets for image classification

- MIT places
- Omniglot
- iNaturalist
- . . .

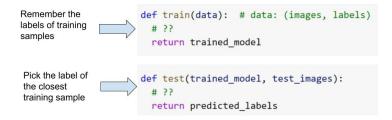
Simple Classifier: Nearest neighbor

Simple Classifier: Nearest neighbor

• Training: Remember the labels of all the training data samples

Simple Classifier: Nearest neighbor

- Training: Remember the labels of all the training data samples
- Testing: Predict the label of the nearest training sample



Time for some hands-on!

Implement the NN classifier and evaluate on MNIST and CIFAR-10

Distance metric between images

• Vectorize (or, flatten) the images, $d = W \times H \times \# channels$

$$d(I_1, I_2) = \left(\sum_{i=1}^d |I_1(i) - I_2(i)|^p\right)^{1/p}$$

Distance metric between images

• Vectorize (or, flatten) the images, $d = W \times H \times \# channels$

$$d(I_1, I_2) = \left(\sum_{i=1}^d |I_1(i) - I_2(i)|^p\right)^{1/p}$$

• Referred to as l_p norm (l_1 , and l_2 are commonly used)

• Training and Testing complexity?

- Training and Testing complexity?
- $\bullet\,$ Constant time O(1) and linear O(N) respectively, where N is size of training set

- Training and Testing complexity?
- $\bullet\,$ Constant time O(1) and linear O(N) respectively, where N is size of training set
- This inference complexity is very much undesirable!

- Training and Testing complexity?
- $\bullet\,$ Constant time O(1) and linear O(N) respectively, where N is size of training set
- This inference complexity is very much undesirable!
- Algorithms are there for finding approximate NNs fast

- Training and Testing complexity?
- $\bullet\,$ Constant time O(1) and linear O(N) respectively, where N is size of training set
- This inference complexity is very much undesirable!
- Algorithms are there for finding approximate NNs fast
- Dimensionality reduction can be considered (e.g., PCA)

NN Classification boundaries

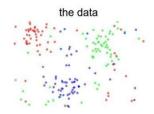


Image Source: CS231n

Dr. Konda Reddy Mopuri

NN Classification boundaries

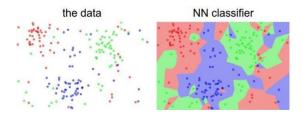
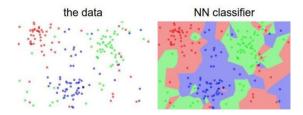


Image Source: CS231n

Dr. Konda Reddy Mopuri

NN Classification boundaries



Observations

- Boundaries are noisy
- Outliers can affect the decisions seriously

Image Source: CS231n

Dr. Konda Reddy Mopuri

How to address these issues?

 Instead of relying on the NN, take a majority voting from multiple neighbors

How to address these issues?

- Instead of relying on the NN, take a majority voting from multiple neighbors
- K nearest neighbors (KNN) classifier

K-NN Classification boundaries

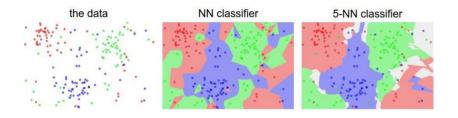


Image Source: CS231n

Dr. Konda Reddy Mopuri

K-NN Classifier

• With appropriate distance metric one can use KNN classifier for any type of data!

• What is the best value of K?

- What is the best value of K?
- What is the suitable distance metric?

- What is the best value of K?
- What is the suitable distance metric?
- These are instances of hyper-parameters in learning

- What is the best value of K?
- What is the suitable distance metric?
- These are instances of hyper-parameters

Hyper-parameters

- Problem-dependent
- General strategy is to try out different values and see what works best!

Setting hyper-parameters

• Try out on the train set?

Setting hyper-parameters

- Try out on the train set?
- Try out on the test set?

Setting hyper-parameters

- Try out on the train set?
- Try out on the test set?
- Answer is the Validation set!

• As the size of training data grows to infinity, KNN classifier can represent (almost) any function!

- As the size of training data grows to infinity, KNN classifier can represent (almost) any function!
- However, succumbs to the curse of dimensionality

- As the size of training data grows to infinity, KNN classifier can represent (almost) any function!
- However, succumbs to the curse of dimensionality
- Expensive inference

- As the size of training data grows to infinity, KNN classifier can represent (almost) any function!
- However, succumbs to the curse of dimensionality
- Expensive inference
- Distance metrics in the pixel space is not very informative (but, one may work with more semantic features such as ones from CNNs)

Linear Classifiers

More powerful than KNN

Linear Classifiers

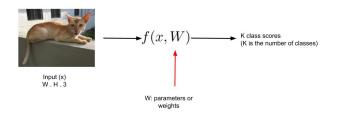
- More powerful than KNN
- Naturally extends to NNs

Linear Classifiers

- More powerful than KNN
- Naturally extends to NNs
- Simple parametric approach for classification

Linear Classifier

- More powerful than KNN
- Naturally extends to NNs
- Simple parametric approach for classification



Linear Classifier: parametric approach

•
$$f(x, W) = Wx$$
,
 $x \in \mathcal{R}^d, W \in \mathcal{R}^{K \times d}$

Linear Classifier: parametric approach

•
$$f(x, W) = Wx$$
,
 $x \in \mathcal{R}^d, W \in \mathcal{R}^{K \times d}$

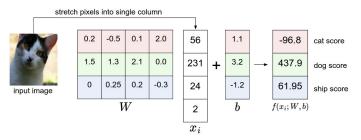
• More general form has bias term f(x,W) = Wx + b, where $b \in \mathcal{R}^K$

Linear Classifier: parametric approach

- f(x, W) = Wx, $x \in \mathcal{R}^d, W \in \mathcal{R}^{K \times d}$
- More general form has bias term f(x,W) = Wx + b, where $b \in \mathcal{R}^K$
- Sometimes we may encounter the bias trick (absorbing the bias into the parameter vector)

and Trues of Technology

Linear Classifier: interpretation

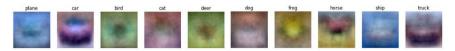


Linear classifier predicting the score as weighted sum over the pixel values

Dr. Konda Reddy Mopuri

dl4cv-1/Image Classification

Figure Source: CS231n

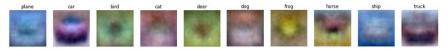


Linear classifier as a template matching

Figure Source: CS231n

Dr. Konda Reddy Mopuri

dl4cv-1/Image Classification



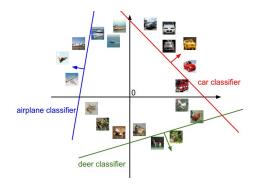
Linear classifier as a template matching

Single template

- Single template may not be sufficient to capture a multi-modal class
- Observe the template for Horse category, heads on both the sides

Figure Source: CS231n

Dr. Konda Reddy Mopuri

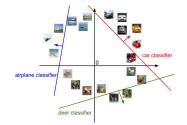


Linear classifier as a separating hyperplane in the input space

Dr. Konda Reddy Mopuri

dl4cv-1/Image Classification

Figure Source: CS231n



Linear classifier as a separating hyperplane in the input space

Nonlinear boundaries

• Linear classifiers can't learn data that is not linearly separable (e.g., XOR function)

Figure Source: CS231n

Dr. Konda Reddy Mopuri

dl4cv-1/Image Classification

• So far, we talked about the function for score prediction (scoring function)

- So far, we talked about the function for score prediction (scoring function)
- But, how do we choose a suitable W?

- So far, we talked about the function for score prediction (scoring function)
- But, how do we choose a suitable *W*?
- Loss function: measures how much happy we are about the model's predictions

- So far, we talked about the function for score prediction (scoring function)
- But, how do we choose a suitable *W*?
- Loss function: measures how much happy we are about the model's predictions
- Also known as objective, or cost function

•
$$s_j = f(x_i, W)_j$$

•
$$s_j = f(x_i, W)_j$$

• $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + \Delta)$

•
$$s_j = f(x_i, W)_j$$

•
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + \Delta)$$

• Interpretation: it wants the score predicted for the correct class to be higher than that of the incorrect classes by some fixed margin

•
$$s_j = f(x_i, W)_j$$

•
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + \Delta)$$

- Interpretation: it wants the score predicted for the correct class to be higher than that of the incorrect classes by some fixed margin
- E.g., s=[13,-7,11], ground-truth is class 0, compute the loss (for a $\Delta value of 10$

•
$$s_j = f(x_i, W)_j$$

•
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + \Delta)$$

- Interpretation: it wants the score predicted for the correct class to be higher than that of the incorrect classes by some fixed margin
- E.g., s=[13,-7,11], ground-truth is class 0, compute the loss (for a $\Delta value of 10$
- Also known as 'Hinge loss' Why?

 $\bullet\,$ Let's say we found a W that correctly classifies all the training examples

- $\bullet\,$ Let's say we found a W that correctly classifies all the training examples
- Is it going to be unique?

- $\bullet\,$ Let's say we found a W that correctly classifies all the training examples
- Is it going to be unique?
- If not, how to choose one among them? Can we have preferences?

Regularization

• Common regularization is L_2 , $R(W) = \sum_k \sum_l W_{k,l}^2$

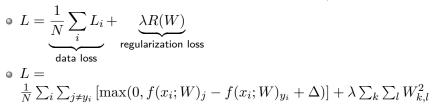
Regularization

• Common regularization is L_2 , $R(W) = \sum_k \sum_l W_{k,l}^2$

•
$$L = \frac{1}{N} \sum_{i} L_{i} + \underbrace{\lambda R(W)}_{\text{regularization loss}}$$

Regularization

• Common regularization is L_2 , $R(W) = \sum_k \sum_l W_{k,l}^2$



Softmax loss function

Reading ahead!

- $\bullet\,$ Built on the cross-entropy from the Information theory $H(p,q) = -\sum_x p(x)\log q(x)$
- Generalization of binary Logistic Regression to multiple classes
- Read about it and implement, we will use it for training soon!

 ${\, \bullet \, }$ We are yet to figure out the procedure for identifying a good $W \to {\rm Optimization!}$