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Image Classification

Familiar CV task: i/p is an image and o/p is a category label
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Challenge: Semantic gap
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Challenge: View point variation
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Challenge: intra-class-variation
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Challenge: lighting-variation
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Other Challenges

Occlusion
Deformation
Clutter
. . .

Dr. Konda Reddy Mopuri dl4cv-1/Image Classification 7



Image classification: elementary task for other
CV tasks

Object detection

Caption Generation
Playing Chess/Go
. . .
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Object Detection
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Caption Generation
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Caption Generation
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Caption Generation
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Caption Generation
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Caption Generation
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Caption Generation
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How to build an image classifier?
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How to build an image classifier?

Are there any rules that can we can hard-code? (like writing a
program for addition of two numbers)

One can see that such an algorithm is not (i) gonna be robust, and
(ii) transferable across categories
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Here comes Machine Learning!

Instead of trying to encode our knowledge of the objects, we take a
data-driven approach

Build algorithms that can learn from the data
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Here comes Machine Learning!
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Common datasets for image classification:
MNIST

10-class problem:
{0, 1, 2, . . . , 9}

28 × 28 gray-scale images
50K for training, and 10K for
testing

Source
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Common datasets for image classification:
CIFAR-10

10-class problem: airplane,
automobile, bird, cat, deer,
dog, frog, horse, ship, truck

32 × 32 RGB images
50K for training, and 10K for
testing

Source
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Common datasets for image classification:
CIFAR-10

10-class problem: airplane,
automobile, bird, cat, deer,
dog, frog, horse, ship, truck
32 × 32 × 3 (RGB) images
50K for training, and 10K for
testing

Source

We work with CIFAR-10

We use CIFAR-10 for most of our assignments and experiments
CIFAR-100 is a related dataset
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Common datasets for image classification:
ImageNet

1000 object categories

1.3M, 50K, 100K training,
validation and testing images
Considered gold standard (as
of 2020s)

Source
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Common datasets for image classification

MIT places

Omniglot
iNaturalist
. . .
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Simple Classifier: Nearest neighbor

Training: Remember the labels of all the training data samples
Testing: Predict the label of the nearest training sample
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Nearest neighbor classifier
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Nearest neighbor classifier

Time for some hands-on!

Implement the NN classifier and evaluate on MNIST and
CIFAR-10
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Distance metric between images

Vectorize (or, flatten) the images, d = W × H × #channels

d(I1, I2) =
( d∑

i=1

∣∣I1(i) − I2(i)
∣∣p)1/p

Referred to as lp norm (l1, and l2 are commonly used)
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Nearest neighbor classifier

Training and Testing complexity?

Constant time O(1) and linear O(N) respectively, where N is size of
training set
This inference complexity is very much undesirable!
Algorithms are there for finding approximate NNs fast
Dimensionality reduction can be considered (e.g., PCA)
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NN Classification boundaries

Image Source: CS231n
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NN Classification boundaries

Image Source: CS231n
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NN Classification boundaries

Observations

Boundaries are noisy
Outliers can affect the decisions seriously

Image Source: CS231n
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How to address these issues?

Instead of relying on the NN, take a majority voting from multiple
neighbors

K nearest neighbors (KNN) classifier
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K-NN Classification boundaries

Image Source: CS231n
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K-NN Classifier

With appropriate distance metric one can use KNN classifier for any
type of data!
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K-NN Classifier, but

What is the best value of K?

What is the suitable distance metric?
These are instances of hyper-parameters in learning
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K-NN Classifier, but

What is the best value of K?
What is the suitable distance metric?
These are instances of hyper-parameters

Hyper-parameters

Problem-dependent
General strategy is to try out different values and see what
works best!
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Setting hyper-parameters

Try out on the train set?

Try out on the test set?
Answer is the Validation set!
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Pros and Cons of of KNN classifier

As the size of training data grows to infinity, KNN classifier can
represent (almost) any function!

However, succumbs to the curse of dimensionality
Expensive inference
Distance metrics in the pixel space is not very informative (but, one
may work with more semantic features such as ones from CNNs)
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Linear Classifiers

More powerful than KNN

Naturally extends to NNs
Simple parametric approach for classification
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Linear Classifier: parametric approach

f(x, W ) = Wx,
x ∈ Rd, W ∈ RK×d

More general form has bias term
f(x, W ) = Wx + b, where b ∈ RK

Sometimes we may encounter the bias trick (absorbing the bias into
the parameter vector)
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Linear Classifier: interpretation

Linear classifier predicting the score as weighted sum over the pixel values

Figure Source: CS231n
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Linear Classifier: interpretation

Linear classifier as a template matching

Figure Source: CS231n
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Linear Classifier: interpretation

Linear classifier as a template matching

Single template

Single template may not be sufficient to capture a multi-modal
class
Observe the template for Horse category, heads on both the
sides

Figure Source: CS231n
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Linear Classifier: interpretation

Linear classifier as a separating hyperplane in the input space

Figure Source: CS231n
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Linear Classifier: interpretation

Linear classifier as a separating hyperplane in the input space

Nonlinear boundaries

Linear classifiers can’t learn data that is not linearly separable
(e.g., XOR function)

Figure Source: CS231n
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The two important functions

So far, we talked about the function for score prediction (scoring
function)

But, how do we choose a suitable W?
Loss function: measures how much happy we are about the model’s
predictions
Also known as objective, or cost function

Dr. Konda Reddy Mopuri dl4cv-1/Image Classification 48
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Multi-class SVM loss

sj = f(xi, W )j

Li =
∑

j,yi
max(0, sj − syi + ∆)

Interpretation: it wants the score predicted for the correct class to be
higher than that of the incorrect classes by some fixed margin
E.g., s = [13, −7, 11], ground-truth is class 0, compute the loss (for a
∆valueof10
Also known as ‘Hinge loss’ Why?
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Multi-class SVM loss

Let’s say we found a W that correctly classifies all the training
examples

Is it going to be unique?
If not, how to choose one among them? Can we have preferences?
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Regularization

Common regularization is L2, R(W ) =
∑

k

∑
l W 2

k,l

L = 1
N

∑
i

Li︸        ︷︷        ︸
data loss

+ λR(W )︸      ︷︷      ︸
regularization loss

L =
1
N

∑
i

∑
j,yi

[max(0, f(xi; W )j − f(xi; W )yi + ∆)] + λ
∑

k

∑
l W 2

k,l
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Softmax loss function

Reading ahead!

Built on the cross-entropy from the Information theory
H(p, q) = −

∑
x p(x) log q(x)

Generalization of binary Logistic Regression to multiple classes
Read about it and implement, we will use it for training soon!
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Next class

We are yet to figure out the procedure for identifying a good W −→
Optimization!
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